NEPHROTIC SYNDROME: A SERIES OF UNFORTUNATE CASES

Shaegan Irusen (Fellow)
Paediatric Nephrology
CMJAH
AN APPROACH

HISTOPATHOLOGICAL DIAGNOSIS

- Minimal change
- Membranous GN
- Focal segmental GN
- C3 Glomerulonephritis (MPGN I and III)
- Dense Deposit Disease (MPGN II)
- IgA Nephropathy
 - Previous viral infection
- Crescentic GN (Rapidly Progressive GN)

CLINICAL ASSESSMENT

- Nephrotic Syndrome (presumed minimal change/FSGS in African patients)
- Nephritic Syndrome
- Mixed

INVESTIGATE AND TREAT THE PRESENTING CLINICAL PICTURE

BIOPSY TO GUIDE DEFINITIVE MANAGEMENT
CASE 1: PATIENT GLOM

- 5 year old male patient referred from district hospital
 - 4 days history of progressive body swelling

- DIFFERENTIAL CONSIDERED?
Examination: Bilateral pitting pedal oedema, soft heart sounds

- Urine dipstick: 3+ proteinuria, no haematuria
- UPCR: 0.45 mmol/l
- Albumin 19
- Cholesterol 7

CXR: small pleural effusions

WHAT TYPE OF NEPHROTIC SYNDROME IS THIS?
WHAT IS THE NEXT STEP?
THE URINE PROT:CREAT RATIO

- >0.2mmol/l = nephrotic range proteinuria
- >0.02mmol/l = abnormal proteinuria

- 0.02 – 0.2mmol/l requires workup
 - fever, systemic inflammation, heavy exercise, orthostatic

- EARLY MORNING URINE COLLECTIONS!
 - Repeat specimens; gauge response
 - Glomerular vs tubular proteinuria
INVESTIGATIONS: AETIOLOGY

- Auto-immune screen
 - Complement fractions, ANA, Anti-dsDNA Ab, proteinase 3 and myeloperoxidase antibodies
 - Consider further screening if above suggestive

- Infectious Screen
 - HIV/Hep B/Hep C/RPR/Malaria/Toxoplasmosis
INVESTIGATIONS: COMPLICATIONS

- FBC: Hb
 - Beware thrombo-embolism
 - Consider: Doppler US, CT Angio, CT Brain/MRI, antithrombin III, Protein C and S

- Iron deficiency anaemia (transferrin)

- CEU/CMP
 - ?underlying chronic kidney disease

- Infections
 - Vaccination status
 - Blood culture, peritoneal tap
 - CXR
DEFINITION: STEROID SENSITIVE NEPHROTIC SYNDROME

Following treatment with oral steroids

- URINE PCR <0.2mg/g OR 1+ PROTEINURIA IN URINE DIPSTICK FOR 3 CONSECUTIVE DAYS
WHY DO STEROIDS WORK?

- Pathogenesis
 - Disorder of T-cells; circulating permeability factor
 - Th2 response
 - Increased cytokine production
 - Eg. VEGF increases capillary permeability via Nitric oxide
 - Role of B-cells
 - Response to Ritximab (CD20 Monoclonal antibody)
 - CD80 is a T-cell co-stimulatory molecule
 - Expressed on podocytes
Treatment of steroid-sensitive nephrotic syndrome: new guidelines from KDIGO

Rebecca M. Lombel · Debbie S. Gipson · Elisabeth M. Hodson
Chapter 3: Steroid-sensitive nephrotic syndrome in children

3.1: Treatment of the initial episode of SSNS

3.1.1: We recommend that corticosteroid therapy (prednisone or prednisolone)* be given for at least 12 weeks. (1B)

3.1.1.1: We recommend that oral prednisone be administered as a single daily dose (1B) starting at 60 mg/m²/d or 2 mg/kg/d to a maximum 60 mg/d. (ID)

3.1.1.2: We recommend that daily oral prednisone be given for 4-6 weeks (1C) followed by alternate-day medication as a single daily dose starting at 40 mg/m² or 1.5 mg/kg (maximum 40 mg on alternate days) (1D) and continued for 2-5 months with tapering of the dose. (1B)

3.2: Treatment of relapsing SSNS with corticosteroids

3.2.1: Corticosteroid therapy for children with infrequent relapses of SSNS:

3.2.1.1: We suggest that infrequent relapses of SSNS in children be treated with a single-daily dose of prednisone 60 mg/m² or 2 mg/kg (maximum of 60 mg/d) until the child has been in complete remission for at least 3 days. (2D)

3.2.1.2: We suggest that, after achieving complete remission, children be given prednisone as a single dose on alternate days (40 mg/m² per dose or 1.5 mg/kg per dose: maximum 40 mg on alternate days) for at least 4 weeks. (2C)
Steroid-sensitive nephrotic syndrome: an evidence-based update of immunosuppressive treatment in children

Nicholas Larkins,¹ Siah Kim,¹,² Jonathan Craig,¹,³ Elisabeth Hodson¹,³

Yassir Mahgoub Bakheit1,2, Abdullahi Mudi1,2,3, Tholang Khumalo1,2, Glenda Moonsamy1,2, Cecil Levy1,2

1. Division of Paediatric Nephrology, Department of Paediatrics and Child Health, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa.
2. Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
3. Department of Paediatrics, Faculty of Clinical Sciences, College of Health Sciences, Bayero University, Kano, Nigeria.
8 year old male patient known to the paediatric renal service
 - DIAGNOSED with nephrotic syndrome
 - 3 relapses in the last 6 months when steroid regimen weaned

- Biopsy: MINIMAL CHANGE DISEASE
- Examination: striae on abdomen, BP >99th centile, early acanthosis nigricans

- WHAT TYPE OF NEPHROTIC SYNDROME IS THIS?
- WHAT IS THE NEXT STEP?
DEFINITIONS

FREQUENT RELAPSE: >2 episodes in 6 months or >4 episodes in 12 months

STEROID DEPENDANCE:
>2 relapses on steroid therapy, whilst weaning or within 14 days of ceasing corticosteroid therapy
3.3: Treatment of FR and SD SSNS with corticosteroid-sparing agents

3.3.1: We recommend that corticosteroid-sparing agents be prescribed for children with FR SSNS and SD SSNS, who develop steroid-related adverse effects. (1B)

3.3.2: We recommend that alkylating agents, cyclophosphamide or chlorambucil, be given as corticosteroid-sparing agents for FR SSNS. (1B) We suggest that alkylating agents, cyclophosphamide or chlorambucil, be given as corticosteroid-sparing agents for SD SSNS. (2C)

3.3.2.1: We suggest that cyclophosphamide (2 mg/kg/d) be given for 8–12 weeks (maximum cumulative dose 168 mg/kg). (2C)

3.3.2.2: We suggest that cyclophosphamide not be started until the child has achieved remission with corticosteroids. (2D)

3.3.2.3: We suggest that chlorambucil (0.1–0.2 mg/kg/d) may be given for 8 weeks (maximum cumulative dose 11.2 mg/kg) as an alternative to cyclophosphamide. (2C)

3.3.2.4: We suggest that second courses of alkylating agents not be given. (2D)
3.3.3: We recommend that levamisole be given as a corticosteroid-sparing agent. (1B)
3.3.3.1: We suggest that levamisole be given at a dose of 2.5 mg/kg on alternate days (2B) for at least 12 months (2C) as most children will relapse when levamisole is stopped.
3.3.4: We recommend that the calcineurin inhibitors cyclosporine or tacrolimus be given as corticosteroid-sparing agents. (1C)
3.3.4.1: We suggest that cyclosporine be administered at a dose of 4-5 mg/kg/d (starting dose) in two divided doses. (2C)
3.3.4.2: We suggest that tacrolimus 0.1 mg/kg/d (starting dose) given in two divided doses be used instead of cyclosporine when the cosmetic side-effects of cyclosporine are unacceptable. (2D)
3.3.4.3: Monitor CNI levels during therapy to limit toxicity. (Not Graded)
3.3.4.4: We suggest that CNI be given for at least 12 months, as most children will relapse when CNI are stopped. (2C)
3.3.5: We suggest that MMF be given as a corticosteroid-sparing agent. (2C)
3.3.5.1: We suggest that MMF (starting dose 1200 mg/m^2/d) be given in two divided doses for at least 12 months, as most children will relapse when MMF is stopped. (2C)
3.3.6: We suggest that rituximab be considered only in children with SD SSNS who have continuing frequent relapses despite optimal combinations of prednisone and corticosteroid-sparing agents, and/or who have serious adverse effects of therapy. (2C)
3.3.7: We suggest that mizoribine not be used as a corticosteroid-sparing agent in FR and SD SSNS. (2C)
3.3.8: We recommend that azathioprine not be used as a corticosteroid-sparing agent in FR and SD SSNS. (1B)
Rituximab Treatment for Relapsing Minimal Change Disease and Focal Segmental Glomerulosclerosis: A Systematic Review

Andreas Kronbichlera Julia Kerschbauma Gema Fernandez-Fresnedob Elion Hoxhac Christine E. Kurschatd Martin Busche Annette Bruchfeldf Gert Mayera Michael Rudnickia
CASE 3: PATIENT MEDULLA

- 9 year old female patient known to the paediatric renal service
 - DIAGNOSED with nephrotic syndrome

 - Biopsy: Focal segmental glomerulosclerosis
 - Received 9 weeks of steroids; dose as per KDIGO

 - Examination: BP>99th centile
 - Urine dipstick: 3+ proteinuria, haematuria

- WHAT TYPE OF NEPHROTIC SYNDROME IS THIS?
- WHAT IS THE NEXT STEP?
DEFINITION: STEROID RESISTANT NEPHROTIC SYNDROME

FAILURE TO ACHIEVE REMISSION WITHIN 8 WEEKS OF STEROID THERAPY
Treatment of steroid-resistant nephrotic syndrome in children: new guidelines from KDIGO

Rebecca M. Lombel · Elisabeth M. Hodson · Debbie S. Gipson
Chapter 4: Steroid-resistant nephrotic syndrome in children

4.1: Evaluation of children with SRNS

4.1.1: We suggest a minimum of 8 weeks treatment with corticosteroids to define steroid resistance. (2D)

4.1.2: The following are required to evaluate the child with SRNS (Not Graded):

- a diagnostic kidney biopsy;
- evaluation of kidney function by GFR or eGFR;
- quantitation of urine protein excretion.
4.2: Treatment recommendations for SRNS

4.2.1: We recommend using a calcineurin inhibitor (CNI) as initial therapy for children with SRNS. (1B)
 4.2.1.1: We suggest that CNI therapy be continued for a minimum of 6 months and then stopped if a partial
 or complete remission of proteinuria is not achieved. (2C)
 4.2.1.2: We suggest CNIs be continued for a minimum of 12 months when at least a partial remission is
 achieved by 6 months. (2C)
 4.2.1.3: We suggest that low-dose corticosteroid therapy be combined with CNI therapy. (2D)

4.2.2: We recommend treatment with ACE-I or ARBs for children with SRNS. (1B)

4.2.3: In children who fail to achieve remission with CNI therapy:
 4.2.3.1: We suggest that mycophenolate mofetil (2D), high-dose corticosteroids (2D), or a combination of
 these agents (2D) be considered in children who fail to achieve complete or partial remission with
 CNIs and corticosteroids.
 4.2.3.2: We suggest that cyclophosphamide not be given to children with SRNS. (2B)

4.2.4: In patients with a relapse of nephrotic syndrome after complete remission, we suggest that therapy be
restarted using any one of the following options: (2C)
 • oral corticosteroids (2D);
 • return to previous successful immunosuppressive agent (2D);
 • an alternative immunosuppressive agent to minimize potential cumulative toxicity (2D).
CASE 4: PATIENT TUBULE

- 3 month old female patient
 - 5 day history of progressive body swelling
 - Birth history – large placenta
 - Examination: Anasarca, no dysmorphism, no hepatosplenomegaly
 - Urine dipstick: 3+ proteinuria
 - UPCR: 0.35mmol/l
 - Albumin 14
 - Cholesterol 9

- WHAT TYPE OF NEPHROTIC SYNDROME IS THIS?
- WHAT IS THE NEXT STEP?
DEFINITION: CONGENITAL NEPHROTIC SYNDROME

NEPHROTIC SYNDROME DIAGNOSED WITHIN 3 MONTHS OF LIFE

CLASSIC TYPE = FINISH TYPE
ADDITIONAL INVESTIGATIONS

- FBC/CEU/CMP
- Thyroid function tests
- Hepatitis serology
- Auto-immune screen
- Infectious Screen

- KUB US
 - Rule out nephroblastoma if indicated

GENETICS
- Founder effect in SA (study at CHBH)
MANAGEMENT: ACE-I/ARB

- Angiotensin converting enzyme inhibitors and Angiotensin receptor blockers
 - Decrease proteinuria and tubular injury
MANAGEMENT

- Vaccinate
 - Streptococcus pneumonia/Varicella
- Consider eltroxin

- ALBUMIN INFUSION WITH DIURETICS
 - Indication: congenital nephrotic, severe pleural/pericardial effusion

- Nephrectomy (Medical vs surgical)
 - Improve patient growth
- Pre-emptive dialysis and workup for transplant
CASE 5: PATIENT HENLE

- 6 year old patient with nephrotic syndrome and acute gastroenteritis
 - Sepsis/inflammation may have triggered a relapse
 - Patient oedematous

- THOROUGH CLINICAL ASSESSMENT
- STOP ACEI-I AND ARB
- STOP DIURETICS
- FLUID RESUSCITATE
 - Patients are underfilled and may require fluids
011 488 3296 (Area 296)

That's all Folks!